setwd("/dartfs-hpc/rc/home/m/f0052zm/szhao_lab_share/jihyun/diff")
foldernames <- list.dirs(recursive=FALSE)
foldernames <- foldernames[ grepl("20220316", foldernames) ]
foldernames
19 tumor types were analyzed, each run for 46 traits. Use Fdr 0.1 as cut off
outdf <- NULL
for (i in 1: length(foldernames)){
tumorName <- gsub("\\./", "", gsub("\\_20220316","",foldernames[i]))
fileNames <- dir(file.path(getwd(),foldernames[i]),pattern = "resdd.txt", full.names = F)
for (j in 1:length(fileNames)){
data <- read.table(file.path(foldernames[i],fileNames[j]), comment="", header = TRUE)
data <- data[data$dd.fdr < 0.1, ]
if (dim(data)[1]!= 0){
data$trait <- gsub("\\_res.*","", fileNames[j])
data$gene <- rownames(data)
data$tumor <- tumorName
outdf <- rbind(data, outdf)
}
}
}
rownames(outdf) <- NULL
outdf <- outdf[with(outdf, order(tumor, dd.fdr)), ]
outdf <- outdf[, c(9,8,7,1:6)]
Add parameter estimates
outdf2 <- cbind(outdf, data.frame("alpha.null" = NA, "alpha0" = NA, "alpha1" = NA))
for (i in 1:nrow(outdf2)){
#for (i in 1){
load(paste0(outdf2[i, "tumor"], "_20220316/", outdf2[i, "trait"], "_resdd.", outdf2[i, "gene"], ".Rd"))
par <- diffdriver::ddmodel(mutmtx, canno$Phenotype, bmrmtx, fe[,1])
outdf2[i, c("alpha.null", "alpha0", "alpha1")] <- c(par$null.param, par$alt.param)
}
outdf2
tumor | gene | trait | dd | mlr | mlr.v2 | dd.fdr | mlr.fdr | mlr.v2.fdr | alpha.null | alpha0 | alpha1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
32 | BLCA | FMN2 | SmokingCessation | 7.425869e-05 | 0.0006166599 | 0.0004852809 | 0.004678297 | 0.03884957 | 0.03057270 | 0.262500 | 27.802814 | -835.80883 |
34 | BLCA | ARID1B | DrinksPerWeek | 4.235875e-04 | 0.0208948295 | 0.0217697748 | 0.026686013 | 0.48318215 | 0.49090826 | 0.887500 | 737.223764 | 1812.75205 |
31 | BLCA | EP300 | SmokingCessation | 1.385923e-03 | 0.0391951293 | 0.0299120078 | 0.043656587 | 0.61732329 | 0.47111412 | 2.700000 | 274.044797 | -534.03808 |
28 | BLCA | PHF3 | ukbEUR_VARICOSE_VEINS | 7.362218e-04 | 0.0814185435 | 0.1326985317 | 0.046381976 | 0.59184271 | 0.70483140 | -0.462500 | -991.712252 | 344.23066 |
33 | BLCA | SF1 | EA_NG_2018_excluding_23andMe | 7.492196e-04 | 0.0172975203 | 0.0201645437 | 0.047200832 | 0.44911674 | 0.54473980 | 0.446875 | -1268.026471 | -835.51528 |
35 | BLCA | FMN2 | DrinksPerWeek | 2.009992e-03 | 0.0100022931 | 0.0105232748 | 0.063314755 | 0.48318215 | 0.49090826 | 0.262500 | 736.761944 | 1783.85048 |
29 | BLCA | MKI67 | SWB_NG_2015 | 1.290483e-03 | 0.0274749483 | 0.0355558091 | 0.081300459 | 0.47528141 | 0.59501867 | -1.075000 | -184.536061 | 1342.90636 |
36 | BLCA | HSP90AA1 | BIP_Cell_2018 | 1.350536e-03 | 0.1122305068 | 0.1794930847 | 0.085083747 | 0.71725528 | 0.93424350 | 1.000000 | -334.322712 | 276.58283 |
30 | BLCA | ARID1B | SmokingCessation | 4.289904e-03 | 0.2857414967 | 0.3021672147 | 0.090087992 | 0.94988805 | 0.97494509 | 0.887500 | 13.657937 | 522.11792 |
26 | HNSC | THSD7A | ukbEUR_PSYCHIATRIC | 3.713252e-04 | 0.0031069903 | 0.0008982485 | 0.012253730 | 0.10253068 | 0.02964220 | -1.037500 | -75.606495 | 1206.52550 |
24 | HNSC | FAT1 | ukbEUR_PSYCHIATRIC | 2.626886e-03 | 0.3856815163 | 0.4371952893 | 0.043343622 | 0.79220879 | 0.80882955 | 25.500000 | 175.746976 | -541.54579 |
23 | HNSC | EPHA2 | ukbEUR_VARICOSE_VEINS | 2.389289e-03 | 0.0031548965 | 0.0014798485 | 0.078846533 | 0.10411159 | 0.04883500 | 1.181250 | -833.734965 | 297.73784 |
27 | HNSC | SMARCA4 | ukbEUR_ALLERGIC_RHINITIS | 2.783025e-03 | 0.1491054680 | 0.1298596654 | 0.091839819 | 0.61580552 | 0.61219557 | 0.562500 | 321.519477 | -447.50115 |
25 | HNSC | RASA1 | ukbEUR_PSYCHIATRIC | 9.003776e-03 | 0.7425501030 | 0.7516081161 | 0.099041536 | 0.87514834 | 0.91863214 | 1.196875 | 173.313675 | 824.14750 |
22 | KIRC | ATM | IMMU | 8.112777e-03 | 0.2257837733 | 0.2483776339 | 0.081127765 | 0.53587523 | 0.58213486 | 4.150000 | 41.999920 | 412.08851 |
18 | LIHC | ARID1A | ukbEUR_OBESITY | 3.901772e-03 | 0.1034694733 | 0.0931384191 | 0.050723030 | 0.60095231 | 0.58453082 | 0.156250 | 501.266724 | 297.69201 |
19 | LIHC | ARID1A | ukbEUR_BMI | 5.660597e-03 | 0.1369189521 | 0.1285657704 | 0.073587758 | 0.60418585 | 0.55711834 | 0.156250 | 921.636060 | 573.96375 |
20 | LIHC | ARID1A | SWB_NG_2015 | 9.031156e-03 | 0.0267209791 | 0.0283458154 | 0.074498598 | 0.31857859 | 0.36849560 | 0.156250 | -116.007523 | 1320.90844 |
21 | LIHC | COL11A1 | SWB_NG_2015 | 1.146132e-02 | 0.0490120912 | 0.0593100587 | 0.074498598 | 0.31857859 | 0.38551538 | -0.956250 | -163.687454 | -1579.80320 |
16 | LUAD | MGA | BMD_2018 | 1.714333e-03 | 0.0015073537 | 0.0009960654 | 0.028819881 | 0.02863972 | 0.01892524 | -0.078125 | 386.461637 | 436.09637 |
17 | LUAD | RB1 | BMD_2018 | 3.033672e-03 | 0.1794517589 | 0.1789524305 | 0.028819881 | 0.54514936 | 0.58855214 | 0.243750 | 358.729732 | 473.50387 |
14 | LUAD | DZIP1L | ukbEUR_CASES | 2.170081e-03 | 0.0108658180 | 0.0127687754 | 0.041231546 | 0.11342601 | 0.12130337 | 0.865625 | 4.182155 | 705.56767 |
13 | LUAD | RB1 | ukbEUR_TI_cojo | 2.624951e-03 | 0.2917339348 | 0.2791322239 | 0.049874067 | 0.46191206 | 0.61820304 | 0.243750 | -360.937163 | -981.84793 |
15 | LUAD | SETD2 | SWB_NG_2015 | 4.497941e-03 | 0.0560942966 | 0.0667918080 | 0.085460878 | 0.48588359 | 0.48814607 | 3.700000 | 91.829827 | 1068.50944 |
12 | LUSC | ADAMTS12 | ukbEUR_CASES | 5.834716e-03 | 0.0118340775 | 0.0083106424 | 0.058347164 | 0.11834078 | 0.08310642 | 38.300000 | -18.716907 | -517.44985 |
11 | PRAD | ATM | ukbEUR_HERNIA_ABDOMINOPELVIC | 7.072951e-03 | 0.1314269383 | 0.1352235289 | 0.099021315 | 0.52776395 | 0.51851314 | 1.125000 | 366.455047 | -564.06793 |
8 | SKCM | HNF4G | IBD_NG2017.hap3 | 4.454584e-04 | 0.0195460393 | 0.0130187890 | 0.008909168 | 0.21458073 | 0.20533229 | 1.675000 | 110.131365 | -178.36080 |
10 | SKCM | HNF4G | BIP_Cell_2018 | 5.092831e-04 | 0.0102335756 | 0.0103167574 | 0.010185662 | 0.12603606 | 0.13558585 | 1.675000 | 392.272450 | -222.77599 |
5 | SKCM | SORCS3 | ukbEUR_CI_cojo | 8.312359e-04 | 0.3803239603 | 0.1389332665 | 0.016624717 | 0.69149811 | 0.48607939 | -1.062500 | -28.211284 | -88.18981 |
2 | SKCM | HNF4G | ukbEUR_TI_cojo | 1.603427e-03 | 0.6132987439 | 0.5337082699 | 0.032068540 | 0.97823085 | 0.95085321 | 1.675000 | 445.982925 | 983.11689 |
9 | SKCM | TACR3 | Breast_Cancer | 2.315632e-03 | 0.1511012484 | 0.2144934872 | 0.046312640 | 0.93354579 | 0.88919101 | 1.575000 | 130.017749 | 250.59202 |
3 | SKCM | GUCA1C | ukbEUR_Height | 3.172305e-03 | 0.0192193267 | 0.0124527862 | 0.063446105 | 0.38438653 | 0.24905572 | -0.262500 | 799.914457 | -426.00289 |
4 | SKCM | GUCA1C | ukbEUR_DYSLIPID | 3.376700e-03 | 0.0380163428 | 0.0520147899 | 0.067533993 | 0.38016343 | 0.26690634 | -0.262500 | 128.909225 | -283.87926 |
7 | SKCM | CDH9 | RA_NG2010.hap3 | 4.412549e-03 | 0.0177085564 | 0.0061885981 | 0.088250980 | 0.17708556 | 0.06188598 | 3.050000 | 375.187072 | -238.15489 |
6 | SKCM | TACR3 | UC_NG_2015 | 4.987284e-03 | 0.0101304365 | 0.0149340136 | 0.099745682 | 0.08508095 | 0.09956009 | 1.575000 | -1432.698813 | -203.78165 |
1 | UCEC | EP300 | ukbEUR_DYSLIPID | 2.089489e-03 | 0.0161016066 | 0.0284157264 | 0.083579551 | 0.32203213 | 0.55214288 | 0.218750 | 115.919507 | -384.57865 |
Add plot for each gene
options(repr.plot.width =7, repr.plot.height =3)
for (i in 1:nrow(outdf)){
load(paste0(outdf[i, "tumor"], "_20220316/", outdf[i, "trait"], "_resdd.", outdf[i, "gene"], ".Rd"))
diffdriver::plot_mut(mutmtx, canno, bmrmtx, ganno, main = paste(outdf[i,c("tumor","gene", "trait")], collapse = "-"))
}
options(repr.plot.width =10, repr.plot.height =6)
labels <- apply(outdf2[, c("gene", "trait")], 1, paste0, collapse = "-")
par(mar=c(10,4,4,4))
a <- barplot(-log10(t(as.matrix(outdf2[, c("dd", "mlr.v2")]))), col= c("salmon","darkgreen"), beside = T, ylab = "-log10(p)", xaxt ='n')
text(a[1,], par("usr")[3], labels = apply(outdf2[, c("gene", "trait")], 1, paste0, collapse = "-"), srt = 45, adj = c(1.1,1.1), xpd = TRUE, cex=0.6)